Dissecting dynamin's role in clathrin-mediated endocytosis.

نویسندگان

  • Marcel Mettlen
  • Thomas Pucadyil
  • Rajesh Ramachandran
  • Sandra L Schmid
چکیده

The GTPase dynamin is essential for CME (clathrin-mediated endocytosis), but its exact function and mechanism of action have been controversial. Here, we review findings that have led to the current models for dynamin function, either as a mechanochemical enzyme driving membrane fission or as a regulatory GTPase monitoring rate-limiting steps in CME. However, these models are not mutually exclusive and subsequent studies have provided evidence for both dynamin functions. Recent evidence derived from divergent in vivo and in vitro approaches suggests that dynamin plays a dual role in CME, functioning at early stages as a fidelity monitor to regulate clathrin-coated pit maturation and at later stages to directly catalyse membrane fission and clathrin-coated vesicle formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamin Rings: Not Just for Fission

The GTPase dynamin has captivated researchers for over two decades, even managing to establish its own research field. Dynamin's allure is partly due to its unusual biochemical properties as well as its essential role in multiple cellular processes, which include the regulation of clathrin-mediated endocytosis and of actin cytoskeleton. On the basis of the classic model, dynamin oligomerization...

متن کامل

A highly-sensitive high throughput assay for dynamin's basal GTPase activity

Clathrin-mediated endocytosis is the major pathway by which cells internalize materials from the external environment. Dynamin, a large multidomain GTPase, is a key regulator of clathrin-mediated endocytosis. It assembles at the necks of invaginated clathrin-coated pits and, through GTP hydrolysis, catalyzes scission and release of clathrin-coated vesicles from the plasma membrane. Several smal...

متن کامل

Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis

The GTPase dynamin plays an essential role in clathrin-mediated endocytosis [1] [2] [3]. Substantial evidence suggests that dynamin oligomerisation around the necks of endocytosing vesicles and subsequent dynamin-catalysed GTP hydrolysis is responsible for membrane fission [4] [5]. The pleckstrin homology (PH) domain of dynamin has previously been shown to interact with phosphoinositides, but i...

متن کامل

Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis.

Amphiphysin (Amph) is a src homology 3 domain-containing protein that has been implicated in synaptic vesicle endocytosis as a result of its interaction with dynamin. In a screen for novel members of the amphiphysin family, we identified Amph2, an isoform 49% identical to the previously characterized Amph1 protein. The subcellular distribution of this isoform parallels Amph1, both being enriche...

متن کامل

Endocytosis: How dynamin sets vesicles PHree!

The dynamin GTPase is required for clathrin-dependent, receptor-mediated endocytosis. Exciting new studies have shown that dynamin's pleckstrin homology domain binds to phosphatidylinositol 4, 5-bisphosphate in vivo, thus localising dynamin directly at the plasma membrane and ultimately enabling vesiculation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 37 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2009